Target Interest Distillation for Multi-Interest Recommendation

Chenyang Wang DCST, BNRist, Tsinghua University Beijing 100084, China wangcy18@mails.tsinghua.edu.cn Zhefan Wang DCST, BNRist, Tsinghua University Beijing 100084, China wzf19@mails.tsinghua.edu.cn Yankai Liu China Mobile Research Institute & THU-CMCC Joint Institute Beijing 100084, China liuyankai@chinamobile.com

Chao Deng China Mobile Research Institute Beijing 100084, China

dengchao@chinamobile.com

Yang Ge

China Mobile Research Institute

Beijing 100084, China

geyang100299@163.com

Weizhi Ma AIR, Tsinghua University Beijing 100084, China mawz@tsinghua.edu.cn

Min Zhang*
DCST, BNRist, Tsinghua University &
THU-CMCC Joint Institute
Beijing 100084, China
z-m@tsinghua.edu.cn

Yiqun Liu DCST, BNRist, Tsinghua University Beijing 100084, China yiqunliu@tsinghua.edu.cn Junlan Feng China Mobile Research Institute Beijing 100084, China fengjunlan@chinamobile.com Shaoping Ma
DCST, BNRist, Tsinghua University
Beijing 100084, China
msp@tsinghua.edu.cn

---CIKM 2022

https://github.com/THUwangcy/ReChorus/tree/CIKM22



1.Introduction

2.Method

Introduction

- 1. Previous work uses the best matching interest for each candidate item to calculate the ranking score, neglecting the target interest distribution in different contexts.
- 2. There is generally no labelling data for the actual user interest, which makes it hard to provide appropriate supervision signals to the target-interest predictor.

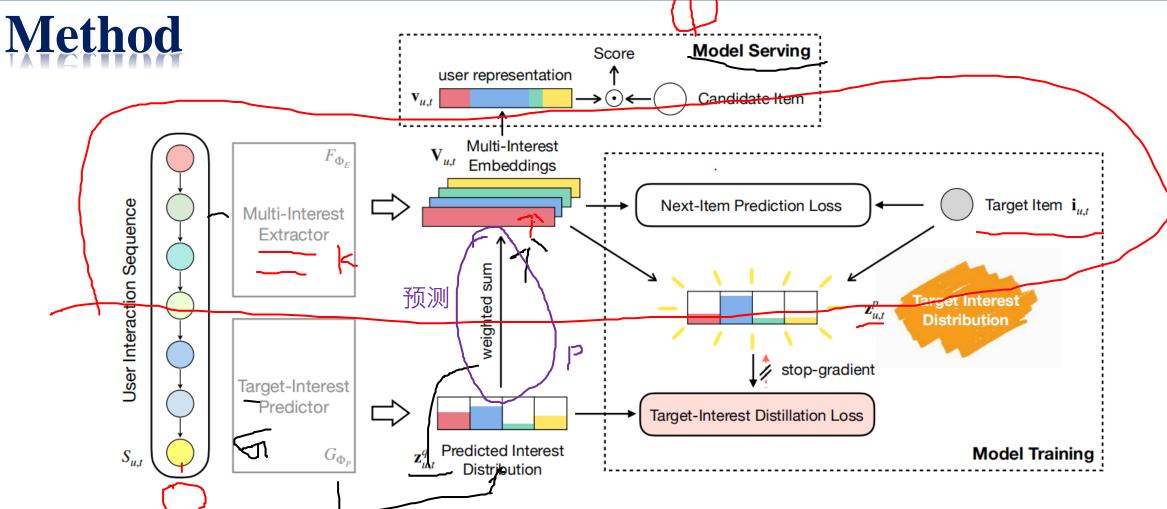


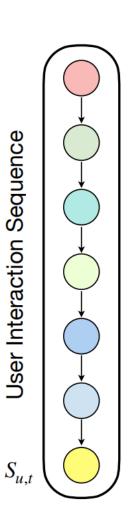
Figure 1: Overview of the proposed TiMiRec framework. TiMiRec mainly consists of two modules: 1) multi-interest extractor and 2) target-interest predictor. The former derives multiple interest embeddings from a user's interaction sequence, while the latter gives the predicted interest distribution in the current context. Then we use the predicted interest distribution to aggregate multi-interest embeddings and calculate the next-item prediction loss. Besides, a target-interest distillation loss is devised to instruct the target-interest predictor, where the soft label of the target interest is derived by the compatibility (cosine similarity) between the target item and multi-interest embeddings, serving as an additional supervision signal.

Preliminaries

Let \mathcal{U} and \mathcal{I} denote the user and item set,

ordered list $[i_{u,1}, i_{u,2}, \dots, i_{u,N_u}]$, where each element $i_{u,t} \in \mathcal{I}$

given the historical sequence before the target time step t, denoted as $S_{u,t}$

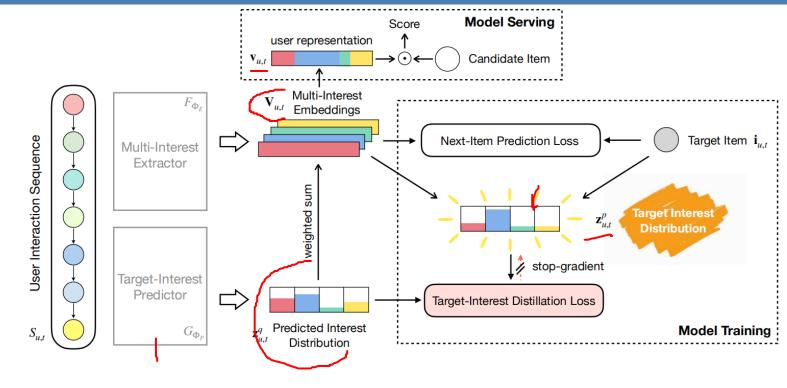


Pretrain multi-interest extractor

$$\mathbf{V}_{u,t} = [\mathbf{v}_{u,t}^1, \cdots, \mathbf{v}_{u,t}^K] \in \mathbb{R}^{D \times K},$$

$$\mathbf{v}_{u,t} = \mathbf{V}_{u,t}[:, \operatorname{argmax}\left(\mathbf{V}_{u,t}^T \mathbf{i}_{\underline{u},\underline{t}}\right)], \tag{2}$$

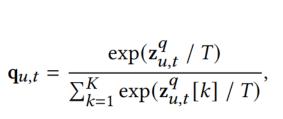
where $i_{u,t}$ is the embedding of the candidate item.



$$\mathbf{z}_{u,t}^{q} = G_{\Phi_P}(S_{u,t}) \in \mathbb{R}^{\underline{K}},\tag{3}$$

$$\mathbf{v}_{u,t} = \mathbf{V}_{u,t} \text{ softmax}(\mathbf{z}_{u,t}^q).$$
 (4)

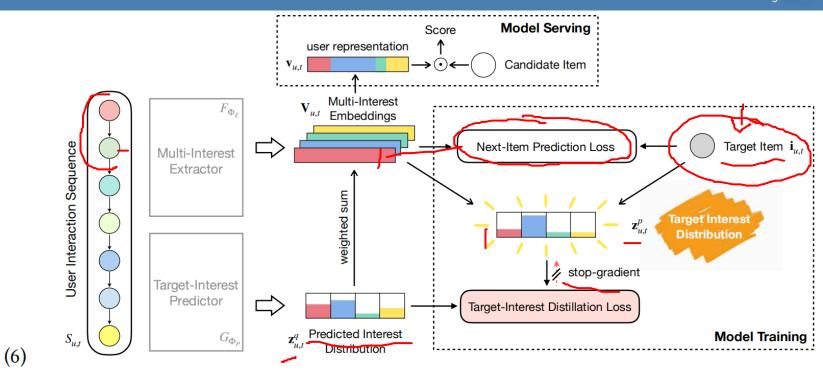
$$\mathbf{z}_{u,t}^{p} = \operatorname{sim}(\mathbf{V}_{u,t}, \mathbf{i}_{\underline{u},\underline{t}}) = \left[\frac{\mathbf{v}_{u,t}^{1}}{||\mathbf{v}_{u,t}^{1}||_{2}} \frac{\mathbf{i}_{u,t}}{||\mathbf{i}_{u,t}||_{2}}, \cdots, \frac{\mathbf{v}_{u,t}^{K}}{||\mathbf{v}_{u,t}^{K}||_{2}} \frac{\mathbf{i}_{u,t}}{||\mathbf{i}_{u,t}||_{2}}\right]. \tag{5}$$



$$\mathbf{p}_{u,t} = \frac{\exp(\mathbf{z}_{u,t}^p / T)}{\sum_{k=1}^K \exp(\mathbf{z}_{u,t}^p [k] / T)}.$$

$$\mathcal{L}'_{\text{distill}} = -\sum_{u \in \mathcal{U}} \sum_{t=2}^{N_u} \mathbf{p}_{u,t}^T \log(\mathbf{q}_{u,t}).$$

$$\mathcal{L}_{\text{distill}} = -\sum_{t} \sum_{i=0}^{N_u} \text{stopgrad}(\mathbf{p}_{u,t}^T) \log(\mathbf{q}_{u,t}).$$

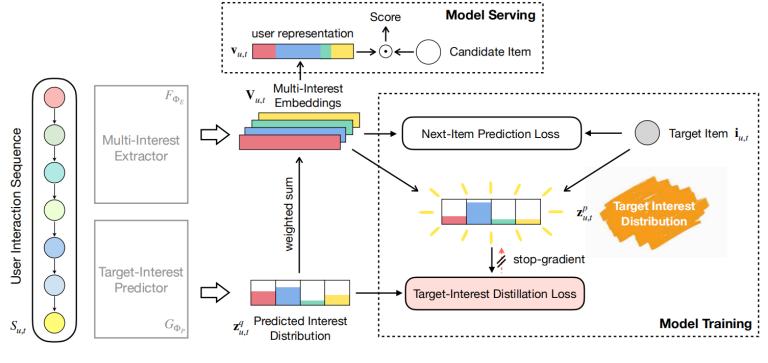


(8)

(9)

$$\mathcal{L}_{\text{rec}} = -\sum_{u \in \mathcal{U}} \sum_{t} \log \sigma \left(\mathbf{v}_{u,t}^{T} \mathbf{i}_{u,t} - \mathbf{v}_{u,t}^{T} \mathbf{i}_{u,t}^{-} \right), \tag{10}$$

$$\mathcal{L} = \mathcal{L}_{\text{rec}} + T^2 \mathcal{L}_{\text{distill}}.$$
 (11)



Multi-Interest Extractor.

 $S_{u,t}$ with length n is first transformed into embeddings $\mathbf{H} \in \mathbb{R}^{D \times n}$

$$\mathbf{A} = \operatorname{softmax} \left(\mathbf{W}_{2}^{T} \tanh(\mathbf{W}_{1}\mathbf{H}) \right)^{T}, \tag{12}$$

$$\underline{A \in \mathbb{R}^{n \times K}} \qquad \mathbf{W}_1 \ D_a \times D \qquad \mathbf{W}_2 \ D_a \times K.$$

$$V_{u,t} = HA. (13)$$

Target-Interest Predictor.

$$\mathbf{s}_{u,t} = \mathrm{GRU}(\mathbf{H}'),\tag{14}$$

where H' is transformed from $S_{u,t}$ with another embedding layer.

$$\mathbf{z}_{u,t}^{q} = \mathbf{W}_{2}^{q} \cdot \text{ReLU}\left(\mathbf{W}_{1}^{q} \cdot \mathbf{s}_{u,t} + \mathbf{b}_{1}\right) + \mathbf{b}_{2},\tag{15}$$

where
$$\mathbf{W}_{1}^{q} \in \mathbb{R}^{D \times D}, \mathbf{W}_{2}^{q} \in \mathbb{R}^{K \times D}, \mathbf{b}_{1} \in \mathbb{R}^{D}, \mathbf{b}_{2} \in \mathbb{R}^{K}$$

Table 1: Statistics of datasets.

Dataset	#user (U)	#item (I)	#inter $(\sum_u N_u)$	density
Beauty 🗸	22,363	12,101	198,502	0.07%
MovieLens√	6,040	3,706	1,000,209	4.47%
CMCC	49,847	29,074	1,300,351	0.09%

Table 2: Top-K recommendation performance on the three datasets. TiMiRec and TiMiRec+ adopt ComiRec and ComiRec+ as the multi-interest extractor, respectively. The best results within the same set of methods are in bold face, and the overall best results are underlined. The superscripts * and ** indicate $p \le 0.05$ and $p \le 0.01$ for the paired t-test of TiMiRec/TiMiRec+ vs. the best baseline within the corresponding model set.

Set	Setting		Models without Transformer Layer			Models with Transformer Layer		Layer		
Dataset	Metric	GRU4Rec	YouTube	MIND	ComiRec	TiMiRec	SASRec	TiSASRec	ComiRec+	TiMiRec+
	H@5	0.1072	0.1040	0.1193	0.1257	0.1437**	0.1435	0.1529	0.1546	0.1573
_	H@10	0.1552	0.1563	0.1727	0.1832	0.2006^{**}	0.2058	0.2084	0.2123	<u>0.2196</u> *
Beauty	H@20	0.2107	0.2264	0.2492	0.2543	0.2645**	0.2706	0.2760	0.2809	<u>0.2887</u> **
Be	N@5	0.0719	0.0702	0.0809	0.0852	0.1006**	0.1004	0.1087	0.1095	0.1112*
	N@10	0.0873	0.0870	0.0981	0.1038	0.1118^{**}	0.1192	0.1266	0.1272	<u>0.1313</u> *
	N@20	0.1013	0.1046	0.1173	0.1217	0.1350**	0.1356	0.1436	0.1459	0.1488^{*}
	H@5	0.2730	0.2336	0.1863	0.2513	0.3091**	0.3124	0.3212	0.2745	0.3333**
ns	H@10	0.3964	0.3406	0.2881	0.3659	0.4310^{**}	0.4407	0.4397	0.3906	0.4556**
ieLe	H@20	0.5323	0.4719	0.4152	0.4937	0.5625**	0.5674	0.5712	0.5091	0.5843**
MovieLens	N@5	0.1875	0.1597	0.1229	0.1708	0.2136**	0.2177	0.2241	0.1875	0.2346**
~	N@10	0.2273	0.1942	0.1558	0.2078	0.2529**	0.2593	0.2625	0.2249	0.2741**
	N@20	0.2616	0.2274	0.1877	0.2400	0.2861**	0.2910	0.2956	0.2549	0.3067**
	H@5	0.3978	0.4170	0.4229	0.4547	0.4812**	0.4681	0.4768	0.4831	0.4886*
()	H@10	0.5121	0.5328	0.5381	0.5716	0.5934**	0.5828	0.5882	0.5960	0.6020 **
СМСС	H@20	0.6306	0.6453	0.6533	0.6845	0.7018**	0.6853	0.6937	0.6997	<u>0.7091</u> **
	N@5	0.2916	0.3064	0.3119	0.3356	0.3636**	0.3533	0.3615	0.3662	0.3690*
	N@10	0.3286	0.3438	0.3492	0.3735	0.3999**	0.3905	0.3975	0.4027	0.4057 *
	N@20	0.3587	0.3723	0.3784	0.4020	0.4273**	0.4164	0.4242	0.4290	0.4329 *

Table 4: Performance of TiMiRec variants.

Method	Bea	nuty	MovieLens		
	H@10	N@10	H@10	N@10	
joint train w/o stopgrad	0.1787 0.1971	0.1030 0.1157	0.4267 0.4260	0.2483 0.2468	
TiMiRec	0.2006	0.1118	0.4310	0.2529	

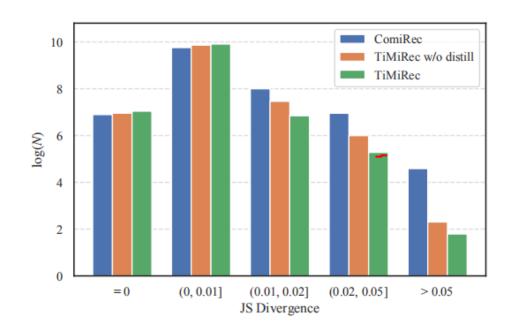


Figure 2: Distribution of Jensen-Shannon divergence between interest distributions of the target item and the top-1 recommended item for different methods on the test set.

Table 4: Performance of TiMiRec variants.

Method	Bea	uty	MovieLens		
1,10,110,1	H@10	N@10	H@10	N@10	
joint train w/o stopgrad	0.1787 0.1971	0.1030 0.1157	0.4267 0.4260	0.2483 0.2468	
TiMiRec	0.2006	0.1118	0.4310	0.2529	

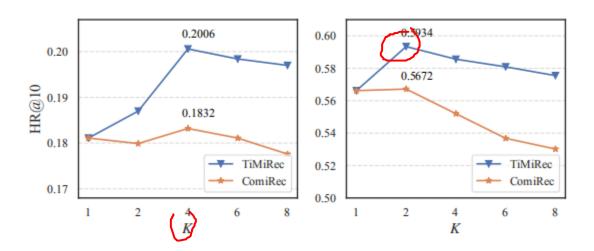


Figure 3: Parameter sensitivity analysis.

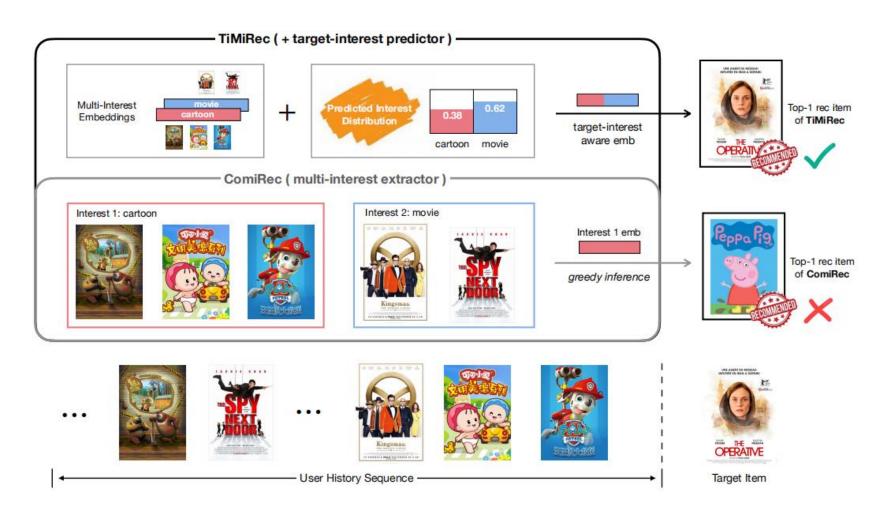


Figure 4: A case study on CMCC dataset. The multi-interest extractor generates two interests from the user history sequence: 1) cartoon and 2) movie. When making recommendations, ComiRec only considers the best matching interest for each candidate item, and hence wrongly recommends a cartoon because it gets the maximal matching score. However, after a series of cartoon watching, the interest for parents to watch movies may take advantage. TiMiRec can capture such dynamic intent with the target-interest predictor and gives the exactly correct recommendation.

Algorithm 1 Learning algorithm of TiMiRec

Input: multi-interest extractor structure F_{Φ_E} , target-interest predictor structure G_{Φ_P} , interest number K

Output: parameters Φ_E , Φ_P

- 1: while not converged do
- 2: $V_{u,t} = F_{\Phi_E}(S_{u,t})$.
- 3: $\mathbf{v}_{u,t} = \mathbf{V}_{u,t} \left[:, \operatorname{argmax} \left(\mathbf{V}_{u,t}^T \mathbf{i}_{u,t} \right) \right].$
- 4: Pretrain multi-interest extractor with \mathcal{L}_{rec} .
- 5: end while
- 6: while not converged do
- 7: $\mathbf{V}_{u,t} = F_{\Phi_E}(S_{u,t}).$
- 8: $\mathbf{z}_{u,t}^{q} = G_{\Phi_P}(S_{u,t}).$
- 9: $\mathbf{z}_{u,t}^p = \sin(\mathbf{V}_{u,t}, \mathbf{i}_{u,t})$, i.e., Eq.(5).
- 10: Calculate target-interest distillation loss $\mathcal{L}_{ ext{distill}}$.
- 11: $\mathbf{v}_{u,t} = \mathbf{V}_{u,t} \operatorname{softmax}(\mathbf{z}_{u,t}^q)$.
- 12: Calculate next-item recommendation loss \mathcal{L}_{rec} .
- 13: Finetune Φ_E and Φ_P with \mathcal{L} , i.e., Eq.(11).
- 14: end while
- 15: **return** Φ_E , Φ_P

Thank you!